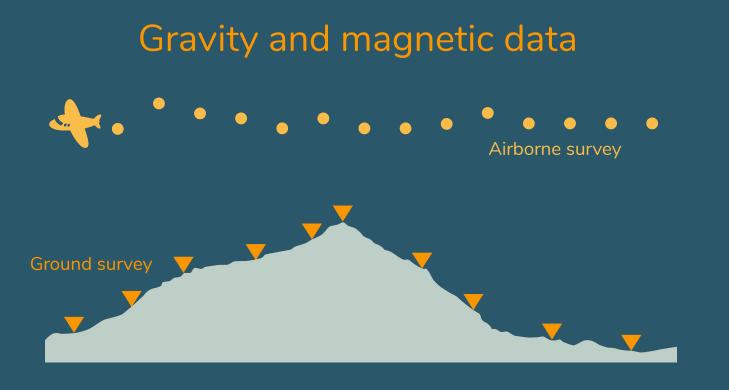


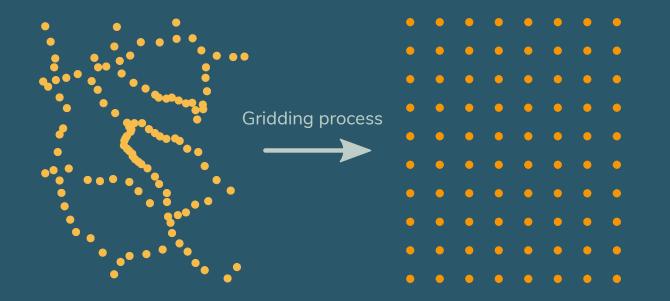
A better strategy for interpolating gravity and magnetic data


Santiago Soler^{1,2} and Leonardo Uieda³

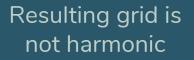
¹ CONICET, Argentina
² Instituto Geofísico Sismológico Volponi, UNSJ, Argentina
³ Department of Earth, Ocean and Ecological Sciences, University of Liverpool, UK

Above surface
Irregular paths
At different heights

What do we know about gravmag data?

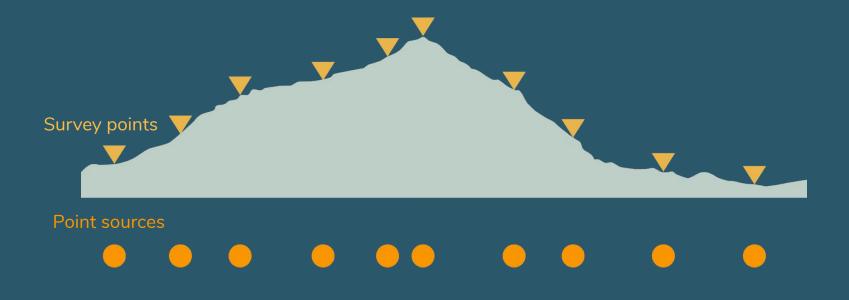


Harmonic fields


Depend on height

And... are usually needed in regular grids

All purpose 2D gridders are not the best option



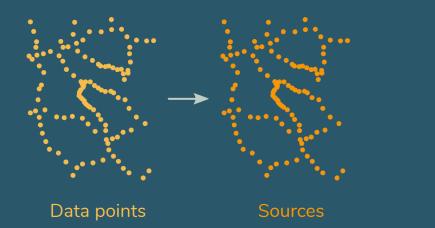
Equivalent Sources

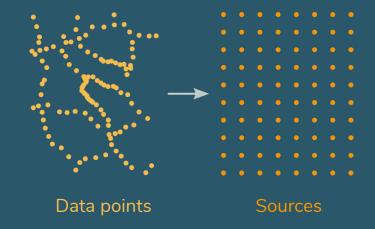
Define a set of point sources that generate the same observed field.

Equivalent Sources

Use the equivalent sources to predict the field on grid points

Advantages of equivalent sources




Where to put the equivalent sources?

Classical Strategies

Sources below data points

Regular grid of sources

Classical Strategies

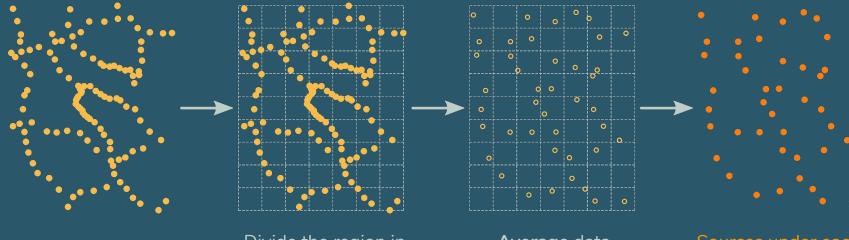
Sources below data points

•••••••••••••••

Disadvantages:

 Could create aliases on anisotropic distribution of sources (e.g. many sources along flight paths).

Regular grid of sources

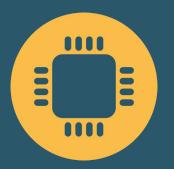


Disadvantages:

 May require too many sources to produce accurate predictions, needing high computational load.

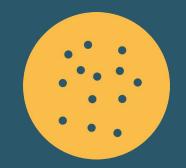
A new strategy

Block-averaged sources


Data points

Divide the region in **blocks** of equal size

Average data coordinates per block


Sources under each averaged location

Advantages of block-averaged sources

Reduces computational load

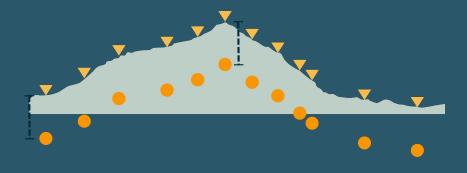
Reduces the number of point sources

Prevents aliasing

Creates non-anisotropic sources

But... at which depth?

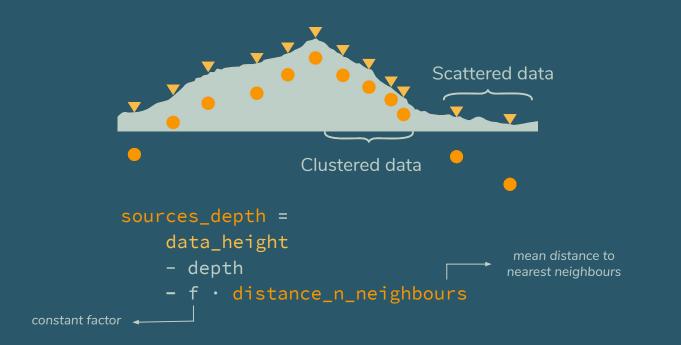
Constant Depth

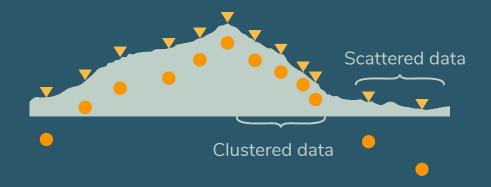


$\bullet \bullet \bullet$

sources_depth = depth

All sources at the same depth.


Relative Depth


sources_depth = data_height - depth

Sources at the same relative depth from its corresponding data point.

Variable Depth

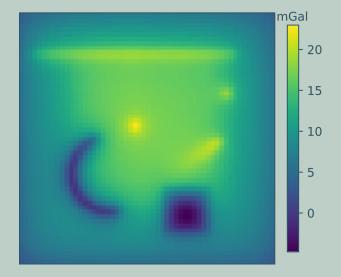
Variable Depth

- Scattered data produce deep sources.
- **Clustered** data produce **shallow** sources.

Source distributions

Combining depth types and source layouts:

	Constant depth	Relative depth	Variable depth
Sources below data	\checkmark	\checkmark	\checkmark
Grid sources	\checkmark	×	×
Block-averaged sources	\checkmark	\checkmark	\checkmark

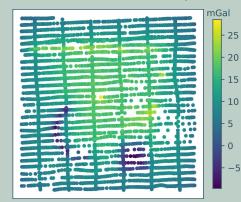

We obtain seven different source distributions.

* Grid sources are only compatible with constant depth

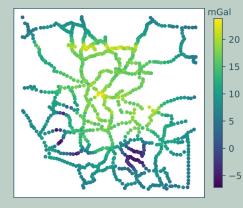
How good are they?

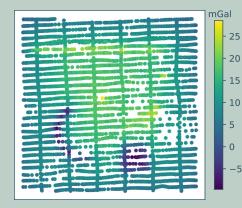
1. Synthetic gravity model

Synthetic gravity model



- 1. Synthetic gravity model
- 2. Synthetic surveys

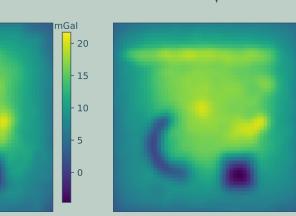

Ground survey



Airborne survey

- 1. Synthetic gravity model
- 2. Synthetic surveys
- 3. Grid data with each source distribution

mGal

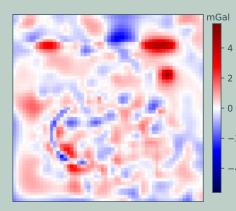

- 20

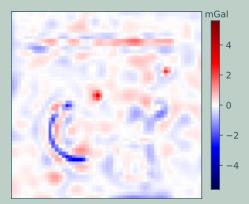
- 15

- 10

5

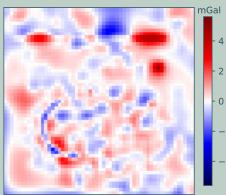
Gridding

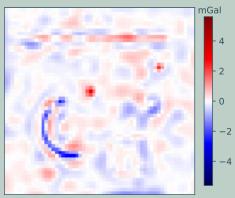



* Obtaining seven grids for each synthetic survey

- 1. Synthetic gravity model
- 2. Synthetic surveys
- 3. Grid data with each source distribution
- 4. Compare against true values

Prediction errors


- 1. Synthetic gravity model
- 2. Synthetic surveys
- 3. Grid data with each source distribution
- 4. Compare against true values
- 5. Score the interpolation


Prediction errors

-2

R² score: 0.916

R² score: 0.981

Ground survey	Constant depth	Relative depth	Variable depth
Sources below data	0.862	0.862	0.878
Grid sources	0.847		
Block-averaged sources	0.867	0.866	0.916
Airborne survey	Constant depth	Relative depth	Variable depth
Airborne survey Sources below data	Constant depth 0.974	Relative depth 0.975	Variable depth 0.975
	· ·		

R² scores

Ground survey	Constant depth urce distribu	Relative depth	Variable depth
	ccurate inter		0.878
Grid sources	0.847		

R² scores

Ground survey	ırce distrik	Relative depth outions achiev	Variable depth
		erpolations	0.878
		-	
Airborne survey Va	riable dep	th produce	
Sources below data S	lightly bett	er results	

But... how many sources do they use?

	Ground survey	Airborne survey
Sources below data	963	5673
Grid sources	1444	6162
Block-averaged sources	518	1663

But... how many sources do they use?

Ground survey Airborne survey

Sources belowBlock-averageddistribution5673Grid sourcescreatesless sources6162

Block-averaged sources

518

1663

Conclusions

- New strategy for gridding: block-averaged sources.
- Produces accurate interpolations, comparable with classical strategies.
- Create less sources, requiring less computational load.
- May help solving aliasing problems.
- Using a variable depth may give more accurate results.

Acknowledgements

This research was possible thanks to the work of developers and maintainers of open-source software.

Want to read more about this?

Article and code will be released soon... stay tuned:

https://www.compgeolab.org/

Slides are available for download:

https://doi.org/10.6084/m9.figshare.12217973

